--- title: Deriving the OLS Estimator date: '2020-12-21' tags: ['next js', 'math', 'ols'] draft: false summary: 'How to derive the OLS Estimator with matrix notation and a tour of math typesetting using markdown with the help of KaTeX.' --- # Introduction Parsing and display of math equations is included in this blog template. Parsing of math is enabled by `remark-math` and `rehype-katex`. KaTeX and its associated font is included in `_document.js` so feel free to use it on any page. [^footnote] [^footnote]: For the full list of supported TeX functions, check out the [KaTeX documentation](https://katex.org/docs/supported.html) Inline math symbols can be included by enclosing the term between the `$` symbol. Math code blocks are denoted by `$$`. If you intend to use the `$` sign instead of math, you can escape it (`\$`), or specify the HTML entity (`$`) [^2] Inline or manually enumerated footnotes are also supported. Click on the links above to see them in action. [^2]: \$10 and $20. # Deriving the OLS Estimator Using matrix notation, let $n$ denote the number of observations and $k$ denote the number of regressors. The vector of outcome variables $\mathbf{Y}$ is a $n \times 1$ matrix, ```tex \mathbf{Y} = \left[\begin{array} {c} y_1 \\ . \\ . \\ . \\ y_n \end{array}\right] ``` $$ \mathbf{Y} = \left[\begin{array} {c} y_1 \\ . \\ . \\ . \\ y_n \end{array}\right] $$ The matrix of regressors $\mathbf{X}$ is a $n \times k$ matrix (or each row is a $k \times 1$ vector), ```latex \mathbf{X} = \left[\begin{array} {ccccc} x_{11} & . & . & . & x_{1k} \\ . & . & . & . & . \\ . & . & . & . & . \\ . & . & . & . & . \\ x_{n1} & . & . & . & x_{nn} \end{array}\right] = \left[\begin{array} {c} \mathbf{x}'_1 \\ . \\ . \\ . \\ \mathbf{x}'_n \end{array}\right] ``` $$ \mathbf{X} = \left[\begin{array} {ccccc} x_{11} & . & . & . & x_{1k} \\ . & . & . & . & . \\ . & . & . & . & . \\ . & . & . & . & . \\ x_{n1} & . & . & . & x_{nn} \end{array}\right] = \left[\begin{array} {c} \mathbf{x}'_1 \\ . \\ . \\ . \\ \mathbf{x}'_n \end{array}\right] $$ The vector of error terms $\mathbf{U}$ is also a $n \times 1$ matrix. At times it might be easier to use vector notation. For consistency, I will use the bold small x to denote a vector and capital letters to denote a matrix. Single observations are denoted by the subscript. ## Least Squares **Start**: $$y_i = \mathbf{x}'_i \beta + u_i$$ **Assumptions**: 1. Linearity (given above) 2. $E(\mathbf{U}|\mathbf{X}) = 0$ (conditional independence) 3. rank($\mathbf{X}$) = $k$ (no multi-collinearity i.e. full rank) 4. $Var(\mathbf{U}|\mathbf{X}) = \sigma^2 I_n$ (Homoskedascity) **Aim**: Find $\beta$ that minimises the sum of squared errors: $$ Q = \sum_{i=1}^{n}{u_i^2} = \sum_{i=1}^{n}{(y_i - \mathbf{x}'_i\beta)^2} = (Y-X\beta)'(Y-X\beta) $$ **Solution**: Hints: $Q$ is a $1 \times 1$ scalar, by symmetry $\frac{\partial b'Ab}{\partial b} = 2Ab$. Take matrix derivative w.r.t $\beta$: ```tex \begin{aligned} \min Q & = \min_{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\ & = \min_{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\ \text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \\ \hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ & = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i \end{aligned} ``` $$ \begin{aligned} \min Q & = \min_{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\ & = \min_{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\ \text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \\ \hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ & = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i \end{aligned} $$